26. Scalar Triple Product

Exercise 26.1

1 A. Question

Evaluate the following :

$$\begin{bmatrix} \hat{i} \ \hat{j} \ \hat{k} \end{bmatrix} + \begin{bmatrix} \hat{j} \ \hat{k} \ \hat{i} \end{bmatrix} + \begin{bmatrix} \hat{k} \ \hat{i} \ \hat{j} \end{bmatrix}$$

Answer

Formula: -(i) $[\vec{a}\vec{b}\vec{c}] = \vec{a}(\vec{b} \times \vec{c}) = \vec{b}.(\vec{c} \times \vec{a}) = \vec{c}.(\vec{a} \times \vec{b})$ (ii) $\hat{1}.\hat{1} = 1, \hat{j}.\hat{j} = 1, \hat{k}.\hat{k} = 1$ (iii) $\vec{1} \times \vec{j} = \vec{k}, \vec{j} \times \vec{k} = \vec{1}, \vec{k} \times \vec{1} = \vec{j}$ we have $[\hat{1}\hat{j}\hat{k}] + [\hat{j}\hat{k}\hat{1}] + [\hat{k}\hat{1}\hat{j}] = (\hat{1} \times \hat{j}).\hat{k} + (\hat{j} \times \hat{k}).\hat{1} + (\hat{k} \times \hat{1}).\hat{j}$ using Formula(i) and (iii) $\Rightarrow [\hat{1}\hat{j}\hat{k}] + [\hat{j}\hat{k}\hat{1}] + [\hat{k}\hat{1}\hat{j}] = \hat{k}.\hat{k} + \hat{1}.\hat{1} + \hat{j}.\hat{j}$ $\Rightarrow [\hat{1}\hat{j}\hat{k}] + [\hat{j}\hat{k}\hat{1}] + [\hat{k}\hat{1}\hat{j}] = 1 + 1 + 1 = 3$ therefore, using Formula (ii)

 $\left[\hat{1}\hat{j}\hat{k}\right] + \left[\hat{j}\hat{k}\hat{1}\right] + \left[\hat{k}\hat{1}\hat{j}\right] = 3$

1 B. Question

Evaluate the following :

$$\begin{bmatrix} 2\hat{i} \ \hat{j} \ \hat{k} \end{bmatrix} + \begin{bmatrix} \hat{i} \ \hat{k} \ \hat{j} \end{bmatrix} + \begin{bmatrix} \hat{k} \ \hat{j} \ 2\hat{i} \end{bmatrix}$$

Answer

```
Formula: -

(i) [\hat{a}\hat{b}\hat{c}] = (\hat{a} \times \hat{b}).\hat{c}

(ii) \hat{1}.\hat{1} = 1, \hat{j}.\hat{j} = 1, \hat{k}.\hat{k} = 1

(iii) \hat{1} \times \vec{j} = \vec{k}, \vec{j} \times \vec{k} = \vec{1}, \vec{k} \times \vec{1} = \vec{j}

Given: -

we have

[2\hat{i}\hat{j}\hat{k}] + [\hat{i}\hat{k}\hat{j}] + [\hat{k}\hat{i}\hat{j}] = (2\hat{i} \times \hat{j}).\hat{k} + (\hat{i} \times \hat{j}).\hat{j} + (\hat{k} \times \hat{j}).2\hat{i}

using Formula (i)

\Rightarrow [2\hat{i}\hat{j}\hat{k}] + [\hat{i}\hat{k}\hat{j}] + [\hat{k}\hat{i}\hat{j}] = 2\hat{k}.\hat{k} + (-\hat{j}).\hat{j} + (-\hat{i}).2\hat{i}

using Formula (ii)

\Rightarrow [2\hat{i}\hat{j}\hat{k}] + [\hat{i}\hat{k}\hat{j}] + [\hat{k}\hat{i}\hat{j}] = 2 - 1 - 2
```

 $\Rightarrow [2\hat{i}\hat{j}\hat{k}] + [\hat{i}\hat{k}\hat{j}] + [\hat{k}\hat{i}j] = -1$

therefore,

 $\left[2\hat{\imath}\hat{k}\right] + \left[\hat{\imath}\hat{k}\hat{\jmath}\right] + \left[\hat{k}\hat{\imath}\right] = -1$

2 A. Question

Find $\begin{bmatrix} \vec{a} & \vec{b} & \vec{c} \end{bmatrix}$, when $\vec{a} = 2\hat{i} - 3\hat{j}, \vec{b} = \hat{i} + \hat{j} - \hat{k}$ and $\vec{c} = 3\hat{i} - \hat{k}$

Answer

Formula: -

$$\begin{aligned} \text{if } \vec{a} &= a_1 \hat{i} + a_2 \hat{j} + a_3 \hat{k}, \vec{b} = b_1 \hat{i} + b_2 \hat{j} + b_3 \hat{k} \text{ and } \vec{c} = c_1 \hat{i} + c_2 \hat{j} + \\ (\text{i}) \\ c_3 \hat{k} \text{ then, } [\vec{a} \vec{b} \vec{c}] &= \begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix} \\ (\text{ii}) \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} = (-1)^{1+1} a_{11} \begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix} + (-1)^{1+2} a_{12} \begin{vmatrix} a_{21} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} + \\ (-1)^{1+3} a_{13} \begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{vmatrix} \end{aligned}$$

Given: -

$$\vec{a} = 2\hat{i} - 3\hat{j}, \vec{b} = \hat{i} + \hat{j} - \hat{k}$$
and $\vec{c} = 3\hat{i} - \hat{k}$

using Formula(i)

 $\begin{bmatrix} \vec{a} \vec{b} \vec{c} \end{bmatrix} = \begin{vmatrix} 2 & -3 & 0 \\ 1 & 1 & -1 \\ 3 & 0 & -1 \end{vmatrix}$

now, using

```
\begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix}
= (-1)^{1+1} a_{11} \cdot \begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix} + (-1)^{1+2} a_{12} \cdot \begin{vmatrix} a_{21} & a_{23} \\ a_{31} & a_{32} \end{vmatrix}
= 2(-1-0) + 3(-1+3)
= -2+6
= 4
therefore,
[\vec{a}\vec{b}\vec{c}] = 4
2 B. Question
Find [\vec{a} \ \vec{b} \ \vec{c}], when
\vec{a} = \hat{i} - 2\hat{j} + 3\hat{k}, \vec{b} = 2\hat{i} + \hat{j} - \hat{k} \text{ and } \vec{c} = \hat{j} + \hat{k}
Answer
```


Formula: -

(i) If
$$\vec{a} = a_1\hat{i} + a_2\hat{j} + a_3\hat{k}$$
, $\vec{b} = b_1\hat{i} + b_2\hat{j} + b_3\hat{k}$ and $\vec{c} = c_1\hat{i} + c_2\hat{j} + c_3\hat{k}$ then, $[\vec{a}\vec{b}\vec{c}] = \begin{bmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{bmatrix}$
(ii) $\begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} = (-1)^{1+1}a_{11} \cdot \begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix} + (-1)^{1+2}a_{12} \cdot \begin{vmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{vmatrix} + (-1)^{1+3}a_{13} \cdot \begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{vmatrix}$

Given: -

$$\vec{a} = \hat{1} - 2\hat{j} + 3\hat{k}, \vec{b} = 2\hat{1} + \hat{j} - \hat{k} \text{ and } \vec{c} = \hat{j} + \hat{k}$$
$$[\vec{a}\vec{b}\vec{c}] = \begin{vmatrix} 1 & -2 & 3 \\ 2 & 1 & -1 \\ 0 & 1 & 1 \end{vmatrix}$$

now, using

$$\begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix}$$

= $(-1)^{1+1} a_{11} \begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix} + (-1)^{1+2} a_{12} \begin{vmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{vmatrix}$
+ $(-1)^{1+3} a_{13} \begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{vmatrix}$
= $1(1+1) + 2(2+0) + 3(2-0)$

$$= 2 + 4 + 6 = 12$$

therefore,

 $\left[\vec{a}\vec{b}\vec{c}\right] = 12$

3 A. Question

Find the volume of the parallelepiped whose coterminous edges are represented by the vectors:

$$\vec{a} = 2\hat{i} + 3\hat{j} + 4\hat{k}, \vec{b} = \hat{i} + 2\hat{j} - \hat{k}, \vec{c} = 3\hat{i} - \hat{j} + 2\hat{k}$$

Answer

Formula : -

$$\begin{split} \vec{a} &= a_1 \hat{i} + a_2 \hat{j} + a_3 \hat{k}, \vec{b} = b_1 \hat{i} + b_2 \hat{j} + b_3 \hat{k} \text{ and } \vec{c} = c_1 \hat{i} + c_2 \hat{j} + \\ (i) \text{ if } \\ c_3 \hat{k} \text{then}, [\vec{a}\vec{b}\vec{c}] &= \begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix} \\ \\ (ii) \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} = (-1)^{1+1} a_{11} \cdot \begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix} + (-1)^{1+2} a_{12} \cdot \begin{vmatrix} a_{21} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} + \\ (-1)^{1+3} a_{13} \cdot \begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{vmatrix}$$

Given: -

$$\vec{a} = 2\hat{i} + 3\hat{j}, \vec{b} = \hat{i} + 2\hat{j} - \hat{k}, \vec{c} = 3\hat{i} - \hat{j} + 2\hat{k}.$$

we know that the volume of parallelepiped whose three adjacent edges are

CLICK HERE

≫

R www.studentbro.in

 $\vec{a}, \vec{b}\vec{c}$ is equal to $|[\vec{a}\vec{b}\vec{c}]|$.

we have

 $\begin{bmatrix} \vec{a} \vec{b} \vec{c} \end{bmatrix} = \begin{bmatrix} 2 & 3 & 4 \\ 1 & 2 & -1 \\ 3 & -1 & 2 \end{bmatrix}$

now, using

$$\begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix}$$

= $(-1)^{1+1} a_{11} \cdot \begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix} + (-1)^{1+2} a_{12} \cdot \begin{vmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{vmatrix}$
+ $(-1)^{1+3} a_{13} \cdot \begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{vmatrix}$
= $2(4-1) - 3(2+3) + 4(-1-6)$
= -37

therefore, the volume of the parallelepiped is $\left[\vec{a}\vec{b}\vec{c}\right] = |-37| = 37$ cubic unit.

3 B. Question

Find the volume of the parallelepiped whose coterminous edges are represented by the vectors:

$$\vec{a} = 2\,\hat{i} - 3\,\hat{j} + 4\,\hat{k}, \vec{b} = \hat{i} + 2\,\hat{j} - \hat{k}, \ \vec{c} = 3\,\hat{i} - \hat{j} - 2\,\hat{k}$$

Answer

Formula : -

(i) if
$$\vec{a} = a_1\hat{i} + a_2\hat{j} + a_3\hat{k}, \vec{b} = b_1\hat{i} + b_2\hat{j} + b_3\hat{k}$$
 and $\vec{c} = c_1\hat{i} + c_2\hat{j} + c_3\hat{k}$ then, $[\vec{a}\vec{b}\vec{c}] = \begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix}$
(ii) $\begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} = (-1)^{1+1}a_{11} \begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix} + (-1)^{1+2}a_{12} \begin{vmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{vmatrix} + (-1)^{1+3}a_{13} \begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{vmatrix}$

CLICK HERE

>>

R www.studentbro.in

Given: -

 $\vec{a} = 2\hat{i} - 3\hat{j}, \vec{b} = \hat{i} + 2\hat{j} - \hat{k}, \vec{c} = 3\hat{i} - \hat{j} + 2\hat{k}.$

we know that the volume of parallelepiped whose three adjacent edges are

 $\vec{a}, \vec{b}, \vec{c}$ is equal to $|[\vec{a}\vec{b}\vec{c}]|$.

we have

$$\begin{bmatrix} \vec{a}\vec{b}\vec{c} \end{bmatrix} = \begin{vmatrix} 2 & -3 & 4 \\ 1 & 2 & -1 \\ 3 & -1 & -2 \end{vmatrix}$$

now, using

$$\begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix}$$

= $(-1)^{1+1} a_{11} \begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix} + (-1)^{1+2} a_{12} \begin{vmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{vmatrix}$
+ $(-1)^{1+3} a_{13} \begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{vmatrix}$
= $2(-4-1) - 3(-2+3) + 4(-1-6)$

= - 35

therefore, the volume of the parallelepiped is $[\vec{a}\vec{b}\vec{c}] = |-35| = 35$ cubic unit.

3 C. Question

Find the volume of the parallelepiped whose coterminous edges are represented by the vectors:

 $\vec{a}=11\hat{i},\,\vec{b}=2\hat{j},\,\vec{c}=13\hat{k}$

Answer

Formula : -

$$\begin{aligned} \text{(i)if} \,\vec{a} &= a_1 \hat{i} + a_2 \hat{j} + a_3 \,\hat{k}, \vec{b} = b_1 \hat{i} + b_2 \hat{j} + b_3 \,\hat{k} \,\text{and} \,\vec{c} \\ &= c_1 \hat{i} + c_2 \hat{j} + c_3 \hat{k} \text{then}, [\vec{a}\vec{b}\vec{c}] = \begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix} \\ \end{aligned} \\ \end{aligned} \\ \end{aligned} \\ \begin{aligned} \text{(ii)} \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} \\ &= (-1)^{1+1} a_{11} \cdot \begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix} + (-1)^{1+2} a_{12} \cdot \begin{vmatrix} a_{21} & a_{23} \\ a_{31} & a_{32} \end{vmatrix} \\ &+ (-1)^{1+3} a_{13} \cdot \begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{vmatrix} \end{aligned}$$

Given: -

$$\vec{a} = 11\hat{i}, \vec{b} = 2\hat{j}, \vec{c} = 3\hat{k}.$$

we know that the volume of parallelepiped whose three adjacent edges are

 $\vec{a}, \vec{b}, \vec{c}$ is equal to $|[\vec{a}\vec{b}\vec{c}]|$.

we have

 $\begin{bmatrix} \vec{a}\vec{b}\vec{c} \end{bmatrix} = \begin{bmatrix} 11 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 13 \end{bmatrix}$

now, using

```
 \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} 
 = (-1)^{1+1} a_{11} \begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix} + (-1)^{1+2} a_{12} \begin{vmatrix} a_{21} & a_{23} \\ a_{31} & a_{32} \end{vmatrix} 
 + (-1)^{1+3} a_{13} \begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{vmatrix}
```

```
= 11(26 - 0) + 0 + 0 = 286
```

therefore, the volume of the parallelepiped is[$\vec{a} \ \vec{b} \ \vec{c}$] = |286| = 286 cubic unit.

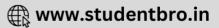
3 D. Question

Find the volume of the parallelepiped whose coterminous edges are represented by the vectors:

$$\vec{a} = \hat{i} + \hat{j} + \hat{k}, \vec{b} = \hat{i} - \hat{j} + \hat{k}, \vec{c} = \hat{i} + 2\hat{j} - \hat{k}$$

Answer

Formula: -



$$(i)i\vec{r}\vec{a} = a_1\hat{i} + a_2\hat{j} + a_3\hat{k}, \vec{b} = b_1\hat{i} + b_2\hat{j} + b_3\hat{k} \text{ and } \vec{c} = c_1\hat{i} + c_2\hat{j} + c_3\hat{k} \text{ then,} [\vec{a}\vec{b}\vec{c}] = \begin{bmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{bmatrix}$$

(ii)
$$\begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix}$$

= $(-1)^{1+1} a_{11} \begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix}$ + $(-1)^{1+2} a_{12} \begin{vmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{vmatrix}$
+ $(-1)^{1+3} a_{13} \begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{vmatrix}$

Given: -

 $\vec{a} = \hat{i} + \hat{j} + \hat{k}, \vec{b} = \hat{i} + 2\hat{j} - \hat{k}, \vec{c} = 3\hat{i} - \hat{j} + 2\hat{k}.$

we know that the volume of parallelepiped whose three adjacent edges are

 $\vec{a}, \vec{b}\vec{c}$ is equal to $[\vec{a}\vec{b}\vec{c}]$.

we have

 $\begin{bmatrix} \vec{a}\vec{b}\vec{c} \end{bmatrix} = \begin{vmatrix} 1 & 1 & 1 \\ 1 & -1 & 1 \\ 1 & 2 & -1 \end{vmatrix}$

now, using

$$\begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix}$$

= $(-1)^{1+1} a_{11} \begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix} + (-1)^{1+2} a_{12} \begin{vmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{vmatrix}$
+ $(-1)^{1+3} a_{13} \begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{vmatrix}$
= $1(1-2) - 1(-1-1) + 1(2+1)$

= 4

therefore, the volume of the parallelepiped is $\left[\vec{a}\vec{b}\vec{c}\right] = |4|$

= 4 cubic unit.

4 A. Question

Show that each of the following triads of vectors is coplanar :

$$\vec{a} = \hat{i} + 2\hat{j} - \hat{k}, \ \vec{b} = 3\hat{i} + 2\hat{j} + 7\hat{k}, \ \vec{c} = 5\hat{i} + 6\hat{j} + 5\hat{k}$$

Answer

Formula : -

$$\begin{aligned} \text{(i)if} \vec{a} &= a_1 \hat{i} + a_2 \hat{j} + a_3 \hat{k}, \vec{b} = b_1 \hat{i} + b_2 \hat{j} + b_3 \hat{k} \text{ and } \vec{c} \\ &= c_1 \hat{i} + c_2 \hat{j} + c_3 \hat{k} \text{ then, } [\vec{a} \vec{b} \vec{c}] = \begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix} \\ \end{aligned} \\ \end{aligned}$$
$$\begin{aligned} \text{(ii)} \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} \\ &= (-1)^{1+1} a_{11} \cdot \begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix} + (-1)^{1+2} a_{12} \cdot \begin{vmatrix} a_{21} & a_{23} \\ a_{31} & a_{32} \end{vmatrix} \\ &+ (-1)^{1+3} a_{13} \cdot \begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{vmatrix}$$

Get More Learning Materials Here :

R www.studentbro.in

(iii)Three vectors \vec{a} , \vec{b} , and \vec{c} are coplanar if and only if

 $\vec{a}.(\vec{b}\times\vec{c})=0$

Given: -

 $\vec{a} = \hat{i} + 2\hat{j} - \hat{k}, \vec{b} = 3\hat{i} + 2\hat{j} + 7\hat{k}, \vec{c} = 5\hat{i} + 6\hat{j} + 5\hat{k}$

we know that three vector $\vec{a}, \vec{b}, \vec{c}$ are coplanar if their scalar triple product is zero

$$\begin{bmatrix} \vec{a} \vec{b} \vec{c} \end{bmatrix} = 0.$$

we have

 $\begin{bmatrix} \vec{a} \vec{b} \vec{c} \end{bmatrix} = \begin{bmatrix} 1 & 2 & -1 \\ 3 & 2 & 7 \\ 5 & 6 & 5 \end{bmatrix}$

$$\begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix}$$

= $(-1)^{1+1} a_{11} \begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix}$ + $(-1)^{1+2} a_{12} \begin{vmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{vmatrix}$
+ $(-1)^{1+3} a_{13} \begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{vmatrix}$
= $1(10 - 42) - 2(15 - 35) - 1(18 - 10)$
= $0.$

Hence, the Given vector are coplanar.

4 B. Question

Show that each of the following triads of vectors is coplanar :

$$\vec{a} = -4\hat{i} - 6\hat{j} - 2\hat{k}, \vec{b} = -\hat{i} + 4\hat{j} + 3\hat{k}, \vec{c} = -8\hat{i} - \hat{j} + 3\hat{k}$$

Answer

Formula : -

(i) if
$$\vec{a} = a_1\hat{i} + a_2\hat{j} + a_3\hat{k}, \vec{b} = b_1\hat{i} + b_2\hat{j} + b_3\hat{k}$$
 and \vec{c}

$$= c_1\hat{i} + c_2\hat{j} + c_3\hat{k}$$
 then, $[\vec{a}\vec{b}\vec{c}] = \begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix}$
(ii) $\begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix}$

$$= (-1)^{1+1} a_{11} \begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix} + (-1)^{1+2} a_{12} \begin{vmatrix} a_{21} & a_{23} \\ a_{31} & a_{32} \end{vmatrix}$$

$$+ (-1)^{1+3} a_{13} \cdot \begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{vmatrix}$$

(iii) Three vectors \vec{a} , \vec{b} , and \vec{c} are coplanar if and only if \vec{a} . $(\vec{b} \times \vec{c}) = 0$

Given: -

 $\vec{a} = -4\hat{i} - 6\hat{j} - 2\hat{k}, \vec{b} = -\hat{i} + 4\hat{j} + 3\hat{k}, \vec{c} = -8\hat{i} - \hat{j} + 3\hat{k}$

we know that three vector $\vec{a}, \vec{b}, \vec{c}$ are coplanar if their scalar triple product is zero

CLICK HERE

>>

R www.studentbro.in

 $\left[\vec{a}\vec{b}\vec{c}\right] = 0.$

we have

 $\begin{bmatrix} \vec{a} \vec{b} \vec{c} \end{bmatrix} = \begin{vmatrix} -4 & -6 & -2 \\ -1 & 4 & 3 \\ -8 & -1 & 3 \end{vmatrix}$

now, using

 $\begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix}$ = $(-1)^{1+1} a_{11} \begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix} + (-1)^{1+2} a_{12} \begin{vmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{vmatrix}$ + $(-1)^{1+3} a_{13} \begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{vmatrix}$ = -4(12 + 13) + 6(-3 + 24) - 2(1 + 32)= 0

hence, the Given vector are coplanar.

4 C. Question

Show that each of the following triads of vectors is coplanar :

$$\hat{a} = \hat{i} - 2\hat{j} + 3\hat{k}, \hat{b} = -2\hat{i} + 3\hat{j} - 4\hat{k}, \hat{c} = \hat{i} - 3\hat{j} + 5\hat{k}$$

Answer

Formula : -

$$(i) if \vec{a} = a_1 \hat{i} + a_2 \hat{j} + a_3 \hat{k}, \vec{b} = b_1 \hat{i} + b_2 \hat{j} + b_3 \hat{k} \text{ and } \vec{c} = c_1 \hat{i} + c_2 \hat{j} + c_3 \hat{k} \text{ then, } \begin{bmatrix} \vec{a} \vec{b} \vec{c} \end{bmatrix} = \begin{bmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{bmatrix}$$

(ii)
$$\begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix}$$
$$= (-1)^{1+1} a_{11} \begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix} + (-1)^{1+2} a_{12} \begin{vmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{vmatrix}$$
$$+ (-1)^{1+3} a_{13} \begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{vmatrix}$$

(iii) Three vectors \vec{a}, \vec{b} and \vec{c} are coplanar if and only if $\vec{a}.(\vec{b}\times\vec{c}) = 0$

Given: -

 $\hat{a} = \hat{1} - 2\hat{j} + 3\hat{k}, \hat{b} = -2i + 3\hat{j} - 4k, \hat{c} = \hat{1} - 3\hat{j} + 5\hat{k}$

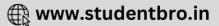
we know that three vector a,b,c are coplanar if their scalar triple product is zero

$$\left[\vec{a}\vec{b}\vec{c}\right] = 0.$$

we have

$$\begin{bmatrix} \vec{a} \vec{b} \vec{c} \end{bmatrix} = \begin{vmatrix} 1 & -2 & 3 \\ -2 & 3 & -4 \\ 1 & -3 & 5 \end{vmatrix}$$

now, using



$$\begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix}$$

= $(-1)^{1+1} a_{11} \begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix}$ + $(-1)^{1+2} a_{12} \begin{vmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{vmatrix}$
+ $(-1)^{1+3} a_{13} \begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{vmatrix}$
= $1(15 - 12) + 2(-10 + 4) + 3(6 - 3)$
= $3 - 12 + 9 = 0$

5 A. Question

Find the value of λ so that the following vectors are coplanar.

$$\vec{a} = \hat{i} - \hat{j} + \hat{k}, \vec{b} = 2\hat{i} + \hat{j} - \hat{k}, \vec{c} = \lambda\hat{i} - \hat{j} + \lambda\hat{k}$$

Answer

Formula : -

$$\begin{aligned} \text{(i)if} \,\vec{a} &= a_1 \hat{i} + a_2 \hat{j} + a_3 \,\hat{k}, \vec{b} &= b_1 \hat{i} + b_2 \hat{j} + b_3 \,\hat{k} \,\text{and} \vec{c} \\ &= c_1 \hat{i} + c_2 \hat{j} + c_3 \hat{k} \text{then}, [\vec{a}\vec{b}\vec{c}] = \begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix} \\ \end{aligned} \\ \end{aligned} \\ \end{aligned} \\ \begin{aligned} \text{(ii)} \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} \\ &= (-1)^{1+1} a_{11} \cdot \begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix} + (-1)^{1+2} a_{12} \cdot \begin{vmatrix} a_{21} & a_{23} \\ a_{31} & a_{32} \end{vmatrix} \\ &+ (-1)^{1+3} a_{13} \cdot \begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{vmatrix} \end{aligned}$$

(iii) Three vectors \vec{a}, \vec{b} , and \vec{c} are coplanar if and only if $\vec{a}. (\vec{b} \times \vec{c}) = 0$

Given: -

 $\vec{a} = \hat{1} - \hat{j} + \hat{k}, \vec{b} = 2\hat{1} + \hat{j} - \hat{k}, \vec{c} = \lambda\hat{1} - \hat{j} + \lambda\hat{k}$

we know that vector $\vec{a}, \vec{b}, \vec{c}$ are coplanar if their scalar triple product is zero

 $\left[\vec{a}\vec{b}\vec{c}\right] = 0.$

we have

$$\begin{bmatrix} \vec{a}\vec{b}\vec{c} \end{bmatrix} = \begin{vmatrix} 1 & -1 & 1 \\ 2 & 1 & -1 \\ \lambda & -1 & \lambda \end{vmatrix}$$

now, using

 $\begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix}$ = $(-1)^{1+1} a_{11} \begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix} + (-1)^{1+2} a_{12} \begin{vmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{vmatrix}$ + $(-1)^{1+3} a_{13} \begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{vmatrix}$ $\Rightarrow 0 = 1(\lambda - 1) + 1(2\lambda + \lambda) + 1(-2 - \lambda)$ $\Rightarrow 0 = \lambda - 1 + 3\lambda - 2 - \lambda$ $\Rightarrow 0 = 3\lambda - 3$

Get More Learning Materials Here :

R www.studentbro.in

 $\Rightarrow \lambda = 1$

5 B. Question

Find the value of $\boldsymbol{\lambda}$ so that the following vectors are coplanar.

$$\vec{a} = 2\hat{i} - \hat{j} + \hat{k}, \vec{b} = \hat{i} + 2\hat{j} - 3\hat{k}, \vec{c} = \lambda\hat{i} + \lambda\hat{j} + 5\hat{k}$$

Answer

Formula : -

(i) if
$$\vec{a} = a_1\hat{i} + a_2\hat{j} + a_3\hat{k}, \vec{b} = b_1\hat{i} + b_2\hat{j} + b_3\hat{k}$$
 and \vec{c}

$$= c_1\hat{i} + c_2\hat{j} + c_3\hat{k}$$
then, $[\vec{a}\vec{b}\vec{c}] = \begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix}$
(ii) $\begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix}$

$$= (-1)^{1+1}a_{11} \cdot \begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix} + (-1)^{1+2}a_{12} \cdot \begin{vmatrix} a_{21} & a_{23} \\ a_{31} & a_{32} \end{vmatrix}$$

$$+ (-1)^{1+3}a_{13} \cdot \begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{vmatrix}$$

(iii) Three vectors \vec{a} , \vec{b} and \vec{c} are coplanar if and only if \vec{a} . $(\vec{b} \times \vec{c}) = 0$

Given: -

 $\vec{a} = 2\hat{i} - \hat{j} + \hat{k}, \vec{b} = \hat{i} + 2\hat{j} - 3\hat{k}, \vec{c} = \lambda\hat{i} + \lambda\hat{j} + 5\hat{k}$

we know that vector $\vec{a}, \vec{b}, \vec{c}$ are coplanar if their scalar triple product is zero

 $\left[\vec{a}\vec{b}\vec{c}\right] = 0.$

we have

 $\begin{bmatrix} \vec{a} \vec{b} \vec{c} \end{bmatrix} = \begin{bmatrix} 2 & -1 & 1 \\ 1 & 2 & -3 \\ \lambda & \lambda & 5 \end{bmatrix}$

now, using

 $\begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix}$ $= (-1)^{1+1} a_{11} \begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix} + (-1)^{1+2} a_{12} \begin{vmatrix} a_{21} & a_{23} \\ a_{31} & a_{32} \end{vmatrix}$ $+ (-1)^{1+3} a_{13} \cdot \begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{vmatrix}$ $\Rightarrow 0 = 2(10 + 3\lambda) + 1(5 + 3\lambda) + 1(\lambda - 2\lambda)$ $\Rightarrow 0 = 8 \lambda + 25$ $\Rightarrow \lambda = \frac{-25}{8}$

5 C. Question

Find the value of $\boldsymbol{\lambda}$ so that the following vectors are coplanar.

CLICK HERE

>>>

🕀 www.studentbro.in

$$\vec{a} = \hat{i} + 2\hat{j} - 3\hat{k}, \vec{b} = 3\hat{i} + \lambda\hat{j} + \hat{k}, \vec{c} = \hat{i} + 2\hat{j} + 2\hat{k}$$

Answer

Formula : -

(i) if
$$\vec{a} = a_1\hat{i} + a_2\hat{j} + a_3\hat{k}, \vec{b} = b_1\hat{i} + b_2\hat{j} + b_3\hat{k}$$
 and \vec{c}

$$= c_1\hat{i} + c_2\hat{j} + c_3\hat{k}$$
 then, $[\vec{a}\vec{b}\vec{c}] = \begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix}$
(ii) $\begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix}$

$$= (-1)^{1+1} a_{11} \cdot \begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix} + (-1)^{1+2} a_{12} \cdot \begin{vmatrix} a_{21} & a_{23} \\ a_{31} & a_{32} \end{vmatrix}$$

$$+ (-1)^{1+3} a_{13} \cdot \begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{vmatrix}$$

(iii) Three vectors \vec{a} , \vec{b} and \vec{c} are coplanar if and only if \vec{a} . $(\vec{b} \times \vec{c}) = 0$

Given: -

 $\vec{a} \,=\, \hat{\imath} \,+\, 2\hat{\jmath} \,-\, 3\hat{k}, \vec{b} \,=\, 3\hat{\imath} \,+\, \lambda\hat{\jmath} \,+\, \hat{k}, \vec{c} \,=\, \hat{\imath} \,+\, 2\hat{\jmath} \,+\, 2\hat{k}$

we know that vector $\vec{a}, \vec{b}, \vec{c}$ are coplanar if their scalar triple product is zero

$$[\vec{a}\vec{b}\vec{c}] = 0.$$

we have

 $\begin{bmatrix} \vec{a} \vec{b} \vec{c} \end{bmatrix} = \begin{bmatrix} 1 & 2 & -3 \\ 3 & \lambda & 1 \\ 1 & 2 & 2 \end{bmatrix}$

now, using

$$\begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix}$$

$$= (-1)^{1+1} a_{11} \begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix} + (-1)^{1+2} a_{12} \begin{vmatrix} a_{21} & a_{23} \\ a_{31} & a_{32} \end{vmatrix}$$

$$+ (-1)^{1+3} a_{13} \begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{vmatrix}$$

$$\Rightarrow 0 = 1(2 \lambda - 2) - 2(6 - 1) - 3(6 - \lambda)$$

$$\Rightarrow 0 = 5 \lambda - 30$$

$$\Rightarrow \lambda = 6$$

5 D. Question

Find the value of $\boldsymbol{\lambda}$ so that the following vectors are coplanar.

$$\vec{a} = \hat{i} + 3\hat{j}, \vec{b} = 5\hat{k}, \vec{c} = \lambda\hat{i} - \hat{j}$$

Answer

Formula : -

$$(i)if\vec{a} = a_1\hat{i} + a_2\hat{j} + a_3\hat{k}, \vec{b} = b_1\hat{i} + b_2\hat{j} + b_3\hat{k} \text{ and } \vec{c} = c_1\hat{i} + c_2\hat{j} + c_3\hat{k} \text{ then,} [\vec{a}\vec{b}\vec{c}] = \begin{bmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{bmatrix}$$

CLICK HERE

(>>

🕀 www.studentbro.in

(ii) $\begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix}$ $= (-1)^{1+1} a_{11} \begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix} + (-1)^{1+2} a_{12} \begin{vmatrix} a_{21} & a_{23} \\ a_{31} & a_{32} \end{vmatrix}$ $+ (-1)^{1+3} a_{13} \cdot \begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{vmatrix}$

(iii) Three vectors \vec{a} , \vec{b} , and \vec{c} are coplanar if and only if \vec{a} . $(\vec{b} \times \vec{c}) = 0$

Given: -

$$\vec{a} = \hat{i} + 3\hat{j}, \vec{b} = 5\hat{k}, \vec{c} = \lambda\hat{i} - \hat{j}$$

we know that vector $\vec{a}, \vec{b}, \vec{c}$ are coplanar if their scalar triple product is zero

 $\left[\vec{a}\vec{b}\vec{c}\right] = 0.$

we have

 $\begin{bmatrix} \vec{a} \vec{b} \vec{c} \end{bmatrix} = \begin{bmatrix} 1 & 3 & 0 \\ 0 & 0 & 5 \\ \lambda & -1 & 0 \end{bmatrix}$

now, using

 $\begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix}$ $= (-1)^{1+1} a_{11} \begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix} + (-1)^{1+2} a_{12} \begin{vmatrix} a_{21} & a_{23} \\ a_{31} & a_{32} \end{vmatrix}$ $+ (-1)^{1+3} a_{13} \cdot \begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{vmatrix}$ $\Rightarrow 0 = 1(0+5) - 3(0-5\lambda) + 0$ $\Rightarrow 0 = 5 + 15\lambda$ $\Rightarrow \lambda = \frac{-1}{3}$

6. Question

Show that the four points having position vectors $6\hat{i} - 7\hat{j}$, $16\hat{i} - 19\hat{j} - 4\hat{k}$, $3\hat{j} - 6\hat{k}$, $2\hat{i} + 5\hat{j} + 10\hat{k}$ are not coplanar.

Answer

Formula : -

 $(i) if \vec{a} = a_1 \hat{i} + a_2 \hat{j} + a_3 \hat{k}, \vec{b} = b_1 \hat{i} + b_2 \hat{j} + b_3 \hat{k} \text{ and } \vec{c} = c_1 \hat{i} + c_2 \hat{j} + c_3 \hat{k} \text{ then,} [\vec{a}\vec{b}\vec{c}] = \begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix}$

(ii)
$$\begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix}$$

= $(-1)^{1+1} a_{11} \begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix}$ + $(-1)^{1+2} a_{12} \begin{vmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{vmatrix}$
+ $(-1)^{1+3} a_{13} \begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{vmatrix}$

(iii) if $\overrightarrow{OA} = a_{1\hat{1}} + a_2\hat{1} + a_3\hat{k}$ and $\overrightarrow{OB} = b_1\hat{1} + b_2\hat{1} + b_3\hat{k}$, then $OB - OA = (b_1 - a_1)\hat{1} + (b_2 - a_2)\hat{1} + (b_3 - a_3)\hat{k}$ (iv) Three vectors \vec{a} , \vec{b} , and \vec{c} are coplanar if and only if \vec{a} . ($\vec{b} \times \vec{c}$) = 0

CLICK HERE

(>>

Given: -

 $\overrightarrow{OA} = 6\hat{i} - 7\hat{j}, \overrightarrow{OB} = 16\hat{i} - 19\hat{j} - 4\hat{k}, \overrightarrow{OC} = 3\hat{j} - 6\hat{k}, \overrightarrow{OD} = 2\hat{i} + 5\hat{j} + 10\hat{k}$ $\overrightarrow{AB} = \overrightarrow{OB} - \overrightarrow{OA} = 10\hat{i} - 12\hat{j} - 4\hat{k}$ $\overrightarrow{AC} = \overrightarrow{OC} - \overrightarrow{OA} = -6\hat{i} + 10\hat{j} - 6\hat{k}$

Get More Learning Materials Here : 📕

🕀 www.studentbro.in

$\overrightarrow{AD} \;=\; \overrightarrow{OD} - \overrightarrow{OA} \;=\; -4\hat{\imath} \;+\; 12\hat{\jmath} \;+\; 10\hat{k}$

The four points are coplaner if vector AB,AC,AD are coplanar.

$$\begin{bmatrix} \overrightarrow{AB} \cdot \overrightarrow{AC} \cdot \overrightarrow{AD} \end{bmatrix} = \begin{vmatrix} 10 & -12 & -4 \\ -6 & 10 & -6 \\ -4 & 12 & 10 \end{vmatrix}$$

now, using

$$\begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix}$$

= $(-1)^{1+1} a_{11} \begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix}$ + $(-1)^{1+2} a_{12} \begin{vmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{vmatrix}$
+ $(-1)^{1+3} a_{13} \begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{vmatrix}$

= 10(100 + 72) + 12(-60 - 24) - 4(-72 + 40) = 840

≠0.

hence the point are not coplanar

7. Question

Show that the points A(- 1, 4, - 3), B(3, 2, - 5), C(- 3, 8, - 5) and D(- 3, 2, 1) are coplanar.

CLICK HERE

>>>

R www.studentbro.in

Answer

Formula: -

$$\begin{aligned} \text{(i)if} \vec{a} &= a_1 \hat{i} + a_2 \hat{j} + a_3 \hat{k}, \vec{b} = b_1 \hat{i} + b_2 \hat{j} + b_3 \hat{k} \text{ and } \vec{c} \\ &= c_1 \hat{i} + c_2 \hat{j} + c_3 \hat{k} \text{ then, } [\vec{a}\vec{b}\vec{c}] = \begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix} \\ \end{aligned} \\ \end{aligned} \\ \end{aligned} \\ \begin{aligned} \text{(ii)} \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} \\ &= (-1)^{1+1} a_{11} \cdot \begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix} + (-1)^{1+2} a_{12} \cdot \begin{vmatrix} a_{21} & a_{23} \\ a_{31} & a_{32} \end{vmatrix} \\ &+ (-1)^{1+3} a_{13} \cdot \begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{vmatrix} \end{aligned}$$

(iii) Three vectors \vec{a} , \vec{b} , and \vec{c} are coplanar if and only if \vec{a} . $(\vec{b} \times \vec{c}) = 0$

$$\begin{aligned} (iv)i\vec{fOA} &= a_{1\hat{1}} + a_2\hat{1} + a_3\hat{k} \text{ and } \vec{OB} &= b_1\hat{1} + b_2\hat{1} + b_3\hat{k}, \text{then OB} - OA \\ &= (b_1 - a_1)\hat{1} + (b_2 - a_2)\hat{1} + (b_3 - a_3)\hat{k} \end{aligned}$$

Given: -

AB = position vector of B - position vector of A

 $=4\hat{i}-2\hat{j}-2\hat{k}$

AC = position vector of c - position vector of A

 $= -2\hat{i} + 4\hat{j} - 2\hat{k}$

AD = position vector of c - position vector of A

$$= -2\hat{i} - 2\hat{j} + 4\hat{k}$$

The four pint are coplanar if the vector are coplanar.

thus,

$$\begin{bmatrix} \overrightarrow{AB} \cdot \overrightarrow{AC} \cdot \overrightarrow{AD} \end{bmatrix} = \begin{vmatrix} 4 & -2 & -2 \\ -2 & 4 & -2 \\ -2 & -2 & 4 \end{vmatrix}$$

now, using

$$\begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix}$$

= $(-1)^{1+1} a_{11} \begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix}$ + $(-1)^{1+2} a_{12} \begin{vmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{vmatrix}$
+ $(-1)^{1+3} a_{13} \begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{vmatrix}$

= 4(16 - 4) + 2(-8 - 4) - 2(-4 + 8) = 0

hence proved.

8. Question

Show that four points whose position vectors are $6\hat{i} - 7\hat{j}$, $16\hat{i} - 19\hat{j} - 4\hat{k}$, $3\hat{i} - 6\hat{k}$, $2\hat{i} - 5\hat{j} + 10\hat{k}$ are coplanar.

Answer

Formula : -

 $(i) if \overrightarrow{OA} = a_{1\hat{1}} + a_2\hat{j} + a_3\hat{k} \text{ and } \overrightarrow{OB} = b_{1\hat{1}} + b_2\hat{j} + b_3\hat{k} \text{ then } \overrightarrow{OB} - \overrightarrow{OA} = (b_1 - a_1)\hat{i} + (b_2 - a_2)\hat{j} + (b_3 - a_3)\hat{k} +$

(ii)
$$\begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix}$$

= $(-1)^{1+1} a_{11} \cdot \begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix}$ + $(-1)^{1+2} a_{12} \cdot \begin{vmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{vmatrix}$
+ $(-1)^{1+3} a_{13} \cdot \begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{vmatrix}$

(iii) Three vectors \mathbf{a}^{\dagger} , \mathbf{b}^{\dagger} , and \mathbf{c}^{\dagger} are coplanar if and only if \mathbf{a}^{\dagger} . ($\mathbf{b}^{\dagger} \times \mathbf{c}^{\dagger}$) = 0

(iv) If
$$\vec{a} = a_1\hat{i} + a_2\hat{j} + a_3\hat{k}, \vec{b} = b_1\hat{i} + b_2\hat{j} + b_3\hat{k}$$
 and $\vec{c} = c_1\hat{i} + c_2\hat{j} + c_3\hat{k}$ then, $[\vec{a}\vec{b}\vec{c}] = \begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix}$

let

$$\overrightarrow{OA} = 6\widehat{i} - 7\widehat{j}, \overrightarrow{OB} = 16\widehat{i} - 19\widehat{j} - 4\widehat{k}, \overrightarrow{OC} = 3\widehat{j} - 6\widehat{k}, OD = 2\widehat{i} - 5\widehat{j} + 10\widehat{k}$$
$$\overrightarrow{AB} = \overrightarrow{OB} - \overrightarrow{OA} = 10\widehat{i} - 12\widehat{j} - 4\widehat{k}$$
$$\overrightarrow{AC} = \overrightarrow{OC} - \overrightarrow{OA} = -6\widehat{i} + 10\widehat{j} - 6\widehat{k}$$
$$\overrightarrow{AD} = \overrightarrow{OD} - \overrightarrow{OA} = -4\widehat{i} + 2\widehat{j} + 10\widehat{k}$$

The four points are coplanar if the vector \overrightarrow{AB} , \overrightarrow{AD} , \overrightarrow{AC} are coplanar.

$$\begin{bmatrix} \overrightarrow{AB}, \overrightarrow{AC}, \overrightarrow{AD} \end{bmatrix} = \begin{vmatrix} 10 & -12 & -4 \\ -6 & 10 & -6 \\ -4 & 2 & 10 \end{vmatrix}$$

now, using

$$\begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix}$$

= $(-1)^{1+1} a_{11} \begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix}$ + $(-1)^{1+2} a_{12} \begin{vmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{vmatrix}$
+ $(-1)^{1+3} a_{13} \begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{vmatrix}$

= 10(100 + 12) + 12(-60 - 24) - 4(-12 + 40) = 0.

hence the point are coplanar

9. Question

Find the value of for which the four points with position vectors $-\hat{j}-\hat{k}$, $4\hat{i}+5\hat{j}+\lambda\hat{k}$, $3\hat{i}+9\hat{j}+4\hat{k}$ and $-4\hat{i}+4\hat{j}+4\hat{k}$ are coplanar.

Answer

Formula : -

(i) if $\overrightarrow{OA} = a1\hat{i} + a2\hat{j} + a3\hat{k}$ and $\overrightarrow{OB} = b_{1\hat{i}} + b_2\hat{j} + b_3\hat{k}$ then $\overrightarrow{OB} - \overrightarrow{OA} = (b_1 - a_1)\hat{i} + (b_2 - a_2)\hat{j} + (b_3 - a_3)\hat{k}$

(ii)
$$\begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix}$$
$$= (-1)^{1+1} a_{11} \begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix} + (-1)^{1+2} a_{12} \begin{vmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{vmatrix}$$
$$+ (-1)^{1+3} a_{13} \cdot \begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{vmatrix}$$

(iii) Three vectors $\vec{a}, \vec{b}, \text{and } \vec{c}$ are coplanar if and only if $\vec{a}.(\vec{b} \times \vec{c}) = 0$

(iv) if
$$\vec{a} = a_1\hat{i} + a_2\hat{j} + a_3\hat{k}$$
, $\vec{b} = b_1\hat{i} + b_2\hat{j} + b_3\hat{k}$ and $\vec{c} = c_1\hat{i} + c_2\hat{j} + c_3\hat{k}$ then, $[\vec{a}\vec{b}\vec{c}] = \begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix}$

Given: -

$$OA = -\hat{j} - \hat{k}, OB = 4\hat{i} + 5\hat{j} - \lambda\hat{k}, OC = 3\hat{i} + 9\hat{j} + 4\hat{k}, OD = -4\hat{i} - 4\hat{j} + 4\hat{k}$$

$$AB = OB - OA = 4\hat{i} + 6\hat{j} + (\lambda + 1)\hat{k}$$

$$AC = OC - OA = 3\hat{i} + 10\hat{j} + 5\hat{k}$$

$$AD = OD - OA = -4\hat{i} + 5\hat{j} + 5\hat{k}$$

The four points are coplaner if vector AB,AC,AD are coplanar.

 $[AB^{3}, AC^{3}, AD^{3}] = \begin{vmatrix} 4 & 6 & (\lambda + 1) \\ 3 & 10 & 5 \\ -4 & 5 & 5 \end{vmatrix}$

now, using

$$\begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix}$$

= $(-1)^{1+1} a_{11} \begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix}$ + $(-1)^{1+2} a_{12} \begin{vmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{vmatrix}$
+ $(-1)^{1+3} a_{13} \begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{vmatrix}$

 $\Rightarrow 4(50 - 25) - 6(15 + 20) + (\lambda + 1)(15 + 40) = 0.$

 $\Rightarrow \lambda = 1$

hence the point are coplanar

10. Question

Prove that : -

 $(\vec{a} - \vec{b}) \cdot \{(\vec{b} - \vec{c}) \times (\vec{c} - \vec{a})\} = 0$

Answer

Formula: -(i) $[\vec{a}\vec{b}\vec{c}] = \vec{a}(\vec{b}\times\vec{c}) = \vec{b}.(\vec{c}\times\vec{a}) = \vec{c}.(\vec{a}\times\vec{b})$ (ii) $\vec{a} \times \vec{a} = \vec{b} \times \vec{b} = \vec{c} \times \vec{c} = 0$ taking L.H.S $(\vec{a} - \vec{b}) \cdot \{ (\vec{b} - \vec{c}) \times (\vec{c} - \vec{a}) \} = [(\vec{a} - \vec{b})(\vec{b} - \vec{c})(\vec{c} - \vec{a})]$ using Formula (i) $\Rightarrow (\vec{a} - \vec{b}) \cdot \{ (\vec{b} - \vec{c}) \times (\vec{c} - \vec{a}) \} = (\vec{a} \times \vec{b} - \vec{a} \times \vec{c} - \vec{b} \times \vec{b} + \vec{b} \times \vec{c}) \cdot (\vec{c} - \vec{a})$ using Formula(ii) $\Rightarrow (\vec{a} - \vec{b}) \cdot \{ (\vec{b} - \vec{c}) \times (\vec{c} - \vec{a}) \} = (\vec{a} \times \vec{b} - \vec{a} \times \vec{c} - 0 + \vec{b} \times \vec{c}) \cdot (\vec{c} - \vec{a})$ \Rightarrow $(\vec{a} - \vec{b}) \cdot \{ (\vec{b} - \vec{c}) \times (\vec{c} - \vec{a}) \}$ $= (\vec{a} \times \vec{b}).\vec{c} - (\vec{a} \times \vec{b}).\vec{a} + (\vec{c} \times a).\vec{c} - (\vec{c} \times \vec{a}).\vec{a} + (\vec{b} \times \vec{c}).\vec{c}$ $-(\vec{b} \times \vec{c}).\vec{a}$ $\Rightarrow (\vec{a} - \vec{b}) \cdot \{ (\vec{b} - \vec{c}) \times (\vec{c} - \vec{a}) \} = [\vec{a}\vec{b}\vec{c}] - [\vec{a}\vec{b}\vec{a}] + [\vec{c}\vec{a}\vec{c}] - [\vec{c}\vec{a}\vec{a}] + [\vec{b}\vec{c}\vec{c}] - [\vec{b}\vec{c}\vec{a}] \}$ \Rightarrow $(\vec{a} - \vec{b})$. $\{(\vec{b} - \vec{c}) \times (\vec{c} - \vec{a})\} = [\vec{a}\vec{b}\vec{c}] - [\vec{b}\vec{c}\vec{a}]$ $\Rightarrow (\vec{a} - \vec{b}) \cdot \{ (\vec{b} - \vec{c}) \times (\vec{c} - \vec{a}) \} = [\vec{a}\vec{b}\vec{c}] - [\vec{a}\vec{b}\vec{c}]$ $\Rightarrow (\vec{a} - \vec{b}) \cdot \{ (\vec{b} - \vec{c}) \times (\vec{c} - \vec{a}) \} = 0$ $\Rightarrow (\vec{a} - \vec{b}) \cdot \{ (\vec{b} - \vec{c}) \times (\vec{c} - \vec{a}) \} = 0$ L.H.S = R.H.S

11. Question

 \vec{a} , \vec{b} and \vec{c} are the position vectors of points A, B and C respectively, prove that : $\vec{a} \times \vec{b} + \vec{b} \times \vec{c} + \vec{c} \times \vec{a}$ is a vector perpendicular to the plane of triangle ABC.

CLICK HERE

>>

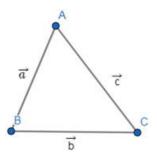
Answer

if \vec{a} represents the sides AB,

if \vec{b} represent the sides BC,

if \vec{c} respresent the sidesAC of triangle ABC

 $\vec{a} \times \vec{b}$ is perpendicular to plane of triangle ABC. (i)



 $\vec{b} \times \vec{c}$ is perpendicular to plane of triangle ABC. (ii)

 $\vec{c} \times \vec{a}$ is perpendicular to plane of triangle ABC. (iii)

adding all the (i) + (ii) + (iii)

hence $\vec{a} \times \vec{b} + \vec{b} \times \vec{c} + \vec{c} \times \vec{a}$ is a vector perpendicular to the plane of the triangle ABC

12 A. Question

Let $\vec{a}=\hat{i}+\hat{j}+\hat{k},\vec{b}=\hat{i}$ and $\hat{c}=c_1\hat{i}+c_2\hat{j}+c_3\hat{k}.$ Then,

If $c_1 = -1$ and $c_2 = 2$, find c_3 which makes \vec{a}, \vec{b} and \vec{c} coplanar.

Answer

Formula: -

(i)
$$\begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix}$$

$$= (-1)^{1+1} a_{11} \begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix} + (-1)^{1+2} a_{12} \begin{vmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{vmatrix}$$

$$+ (-1)^{1+3} a_{13} \begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{vmatrix}$$
(ii) if $\vec{a} = a_1 \hat{i} + a_1 \hat{j} + a_2 \hat{k} \vec{k} = b_1 \hat{i} + b_1 \hat{j} + b_1 \hat{k}$ and \vec{c}

(ii) if $\vec{a} = a_1 \hat{i} + a_2 \hat{j} + a_3 \hat{k}$, $\vec{b} = b_1 \hat{i} + b_2 \hat{j} + b_3 \hat{k}$ and \vec{c} $= c_1 \hat{i} + c_2 \hat{j} + c_3 \hat{k}$ then, $[\vec{a}\vec{b}\vec{c}] = \begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix}$

(iii) Three vectors \vec{a} , \vec{b} , and \vec{c} are coplanar if and only if \vec{a} . $(\vec{b} \times \vec{c}) = 0$ Given: -

 $\vec{a}, \vec{b}, \vec{c}$ are coplanar if

$$\begin{bmatrix} \vec{a}\vec{b}\vec{c} \end{bmatrix} = 0$$

$$\begin{vmatrix} 1 & 1 & 1 \\ 1 & 0 & 0 \\ c_1 & c_2 & c_3 \end{vmatrix} = 0$$

$$\Rightarrow \begin{vmatrix} 1 & 1 & 1 \\ 1 & 0 & 0 \\ 1 & 2 & c_3 \end{vmatrix} = 0$$
now, using

$$\begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} = (-1)^{1+1} a_{11} \begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix} + (-1)^{1+2} a_{12} \begin{vmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{vmatrix} + (-1)^{1+3} a_{13} \begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{vmatrix}$$
$$\Rightarrow 0 - 1(c_{2}) + 1(2) = 0$$

 $\Rightarrow 0 - 1(c_3) + 1(2) = 0$

 $\Rightarrow c_3 = 2$

12 B. Question

Let $\vec{a}=\hat{i}+\hat{j}+\hat{k},\vec{b}=\hat{i}$ and $\hat{c}=c_1\hat{i}+c_2\hat{j}+c_3\hat{k}.$ Then,

If $c_1 = -1$ and $c_3 = 1$, show that no value of c_1 can make \vec{a}, \vec{b} and \vec{c} coplanar.

Answer

Formula: -

$$\begin{aligned} \text{(i)if} \vec{a} &= a_1 \hat{i} + a_2 \hat{j} + a_3 \hat{k}, \vec{b} = b_1 \hat{i} + b_2 \hat{j} + b_3 \hat{k} \text{ and } \vec{c} = c_1 \hat{i} + c_2 \hat{j} + c_3 \hat{k} \text{ then,} [\vec{a}\vec{b}\vec{c}] = \begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix} \\ \text{(ii)} \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} \\ &= (-1)^{1+1} a_{11} \begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix} + (-1)^{1+2} a_{12} \begin{vmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{vmatrix} \\ &+ (-1)^{1+3} a_{13} \begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{vmatrix} \end{aligned}$$

(iii) Three vectors $\vec{a}, \vec{b}, \text{ and } \vec{c}$ are coplanar if and only if $\vec{a}. (\vec{b} \times \vec{c}) = 0$

we know that $\vec{a}, \vec{b}, \vec{c}$ are coplanar if

 $\begin{bmatrix} \vec{a} \vec{b} \vec{c} \end{bmatrix} = 0$ $\begin{vmatrix} 1 & 1 & 1 \\ 1 & 0 & 0 \\ c_1 & c_2 & c_3 \end{vmatrix} = 0$ $\Rightarrow \begin{vmatrix} 1 & 1 & 1 \\ 1 & 0 & 0 \\ -1 & c_2 & 1 \end{vmatrix} = 0$

now, using

 $\begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix}$ $= (-1)^{1+1} a_{11} \begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix} + (-1)^{1+2} a_{12} \begin{vmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{vmatrix}$ $+ (-1)^{1+3} a_{13} \begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{vmatrix}$ $\Rightarrow 0 - 1(c_3) + 1(2) = 0$

⇒ c₃ = 2

13. Question

Find for which the points A(3, 2, 1), B(4, λ , 5), C(4, 2, -2) and D(6, 5, -1) are coplanar.

Get More Learning Materials Here : 📕

CLICK HERE

Answer

Formula: -

 $(i)if\vec{a} = a_1\hat{i} + a_2\hat{j} + a_3\hat{k}, \vec{b} = b_1\hat{i} + b_2\hat{j} + b_3\hat{k} \text{ and } \vec{c} = c_1\hat{i} + c_2\hat{j} + c_3\hat{k} \text{ then}, \begin{bmatrix}\vec{a}\vec{b}\vec{c}\end{bmatrix} = \begin{bmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{bmatrix}$

(ii)
$$\begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix}$$

= $(-1)^{1+1} a_{11} \cdot \begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix}$ + $(-1)^{1+2} a_{12} \cdot \begin{vmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{vmatrix}$
+ $(-1)^{1+3} a_{13} \cdot \begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{vmatrix}$

(iii) Three vectors \vec{a}, \vec{b} and \vec{c} are coplanar if and only if $\vec{a}.(\vec{b} \times \vec{c}) = 0$

(iv) if
$$\overrightarrow{OA} = a_{1\hat{1}} + a_2\hat{1} + a_3\hat{k}$$
 and $\overrightarrow{OB} = b_{1\hat{1}} + b_2\hat{1} + b_3\hat{k}$ then $OB - OA$
= $(b_1 - a_1)\hat{1} + (b_2 - a_2)\hat{1} + (b_3 - a_3)\hat{k}$

let position vector of

 $OA = 3\hat{i} + 2\hat{j} + \hat{k}$

position vector of

 $OB = 4\hat{i} + \lambda\hat{j} + 5\hat{k}$

position vector of

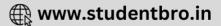
 $OC = 4\hat{i} + 2\hat{j} - 2\hat{k}$

position vector of

```
OD = 6\hat{i} + 5\hat{j} - \hat{k}
```

The four points are coplanar if the vector \overrightarrow{AB} , \overrightarrow{AC} , \overrightarrow{AD} are coplanar

```
\overline{AB} = \hat{1} + (\lambda - 2)\hat{j} + 4\hat{k}
\overline{AC} = \hat{1} + 0\hat{j} - 3\hat{k}
\overline{AD} = 3\hat{1} + 3\hat{j} - 2\hat{k}
\begin{vmatrix} 1 & (\lambda - 2) & 4 \\ 1 & 0 & -3 \\ 3 & 3 & -2 \end{vmatrix} = 0
now, using
\begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix}
= (-1)^{1+1} a_{11} \cdot \begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix} + (-1)^{1+2} a_{12} \cdot \begin{vmatrix} a_{21} & a_{23} \\ a_{31} & a_{32} \end{vmatrix}
+ (-1)^{1+3} a_{13} \cdot \begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{vmatrix}
\Rightarrow 1(9) - (\lambda - 2)(-2 + 9) + 4(3 - 0) = 0
\Rightarrow 7\lambda = 35
\Rightarrow \lambda = 5
14. Question
```



If four points A, B, C and D with position vectors $4\hat{i} + 3\hat{j} + 3\hat{k}$, $5\hat{i} + x\hat{j} + 7\hat{k}$, $5\hat{i} + 3\hat{j}$ and $7\hat{i} + 6\hat{j} + \hat{k}$ respectively are coplanar, then find the value of x.

Answer

Formula: -

 $\begin{aligned} \text{(i)if} \,\vec{a} &= a_1 \hat{i} + a_2 \hat{j} + a_3 \,\hat{k}, \vec{b} = b_1 \hat{i} + b_2 \hat{j} + b_3 \,\hat{k} \,\text{and} \,\vec{c} \\ &= c_1 \hat{i} + c_2 \hat{j} + c_3 \hat{k} \,\text{then}, [\vec{a}\vec{b}\vec{c}] = \begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix} \\ \end{aligned} \\ \end{aligned} \\ \end{aligned} \\ \begin{aligned} \text{(ii)} \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} \\ &= (-1)^{1+1} a_{11} \cdot \begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix} + (-1)^{1+2} a_{12} \cdot \begin{vmatrix} a_{21} & a_{23} \\ a_{31} & a_{32} \end{vmatrix} \\ &+ (-1)^{1+3} a_{13} \cdot \begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{vmatrix} \end{aligned}$

(iii) Three vectors \vec{a} , \vec{b} , and \vec{c} are coplanar if and only if $\vec{a}.(\vec{b}\times\vec{c}) = 0$

(iv) if
$$\overrightarrow{OA} = a_{1\hat{1}} + a_2\hat{1} + a_3\hat{k}$$
 and $\overrightarrow{OB} = b_{1\hat{1}} + b_2\hat{1} + b_3\hat{k}$ then $OB - OA$
= $(b_1 - a_1)\hat{1} + (b_2 - a_2)\hat{1} + (b_3 - a_3)\hat{k}$

let position vector of

 $OA = 4\hat{i} + 3\hat{j} + 3\hat{k}$

position vector of

 $OB = 5\hat{i} + x\hat{j} + 7\hat{k}$

position vector of

 $OC = 5\hat{i} + 3\hat{j}$

position vector of

 $OD = 7\hat{i} + 6\hat{j} + \hat{k}$

The four points are coplanar if the vector AB, AC, AD are coplanar

```
\begin{aligned} \overrightarrow{AB} &= \widehat{1} + (x-3)\widehat{j} + 4k, \\ \overrightarrow{AC} &= \widehat{1} + 0\widehat{j} - 3\widehat{k}, \\ \overrightarrow{AD} &= 3\widehat{1} + 3\widehat{j} - 2\widehat{k} \\ \begin{vmatrix} 1 & (x-2) & 4 \\ 1 & 0 & -3 \\ 3 & 3 & -2 \end{vmatrix} = 0 \\ \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} \\ &= (-1)^{1+1} a_{11} \cdot \begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix} + (-1)^{1+2} a_{12} \cdot \begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{vmatrix} \\ &+ (-1)^{1+3} a_{13} \cdot \begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{vmatrix} \\ &\Rightarrow 1(9) - (x-2)(-2+9) + 4(3) = 0 \\ &\Rightarrow 9 - 7x + 14 + 12 = 0 \\ &\Rightarrow 35 = 7x \end{aligned}
```

CLICK HERE

🕀 www.studentbro.in

⇒ x = 5

Very short answer

1. Question

Write the value of $\begin{bmatrix} 2\hat{i} & 3\hat{j} & 4\hat{k} \end{bmatrix}$.

Answer

The meaning of the notation $[\vec{a}, \vec{b}, \vec{c}]$ is the scalar triple product of the three vectors; which is computed as $\vec{a} \cdot (\vec{b} \times \vec{c})$

So we have $2\hat{\iota} \cdot (3\hat{\jmath} \times 4\hat{k}) = 2\hat{\iota} \cdot 12\hat{\iota} = 24 (\hat{\jmath} \times \hat{k} = \hat{\iota})$

2. Question

Write the value of $\left[\, \hat{i} + \hat{j} \; \hat{j} + \hat{k} \; \; \hat{k} - \hat{i} \, \right]$

Answer

Here we have $\vec{a} = \hat{\iota} + \hat{j}, \vec{b} = \hat{j} + \hat{k}, \vec{c} = \hat{k} - \hat{\iota}$

$$\overrightarrow{a} \cdot \left(\overrightarrow{b} \times \overrightarrow{c}\right) = \begin{vmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ -1 & 0 & 1 \end{vmatrix} = 0$$

3. Question

Write the value of $\begin{bmatrix} \hat{i} - \hat{j} \hat{j} - \hat{k} & \hat{k} - \hat{i} \end{bmatrix}$.

Answer

The value of the above product is the value of the matrix $\begin{vmatrix} 1 & -1 & 0 \\ 0 & 1 & -1 \\ -1 & 0 & 1 \end{vmatrix} = 0$

4. Question

Find the values of 'a' for which the vectors $\vec{\alpha} = \hat{i} + 2\hat{j} + \hat{k}$, $\vec{\beta} = a\hat{i} + \hat{j} + 2\hat{k}$ and $\vec{\gamma} = \hat{i} + 2\hat{j} + a\hat{k}$ are coplanar.

Answer

Three vectors are coplanar iff (if and only if) $\vec{a} \cdot (\vec{b} \times \vec{c}) = 0$

Hence we have value of the matrix $\begin{vmatrix} 1 & 2 & 1 \\ a & 1 & 2 \\ 1 & 2 & a \end{vmatrix} = 0$

We have 2a²-3a+1=0

$2a^2-2a-a+1=0$

Solving this quadratic equation we get a = 1, $a = \frac{1}{2}$

5. Question

Find the volume of the parallelepiped with its edges represented by the vectors $\hat{i} + \hat{j}$, $\hat{i} + 2\hat{j}$ and $\hat{i} + \hat{j} + \pi \hat{k}$.

Answer

Volume of the parallelepiped with its edges represented by the vectors $\vec{a}, \vec{b}, \vec{c}$ is $[\vec{a}, \vec{b}, \vec{c}] = \vec{a}, (\vec{b} \times \vec{c})$

Get More Learning Materials Here : 📕

Regional www.studentbro.in

$$= \begin{vmatrix} 1 & 1 & 0 \\ 1 & 2 & 0 \\ 1 & 1 & \pi \end{vmatrix} = \pi$$

6. Question

If \vec{a} , \vec{b} are non-collinear vectors, then find the value of $\begin{bmatrix} \vec{a} & \vec{b} & \hat{i} \end{bmatrix} \hat{i} + \begin{bmatrix} \vec{a} & \vec{b} & \hat{j} \end{bmatrix} + \begin{bmatrix} \vec{a} & \vec{b} & \hat{k} \end{bmatrix} \hat{k}$.

Answer

for any vector \vec{r} We have $\vec{r} = (\vec{r} \cdot \hat{\imath})\hat{\imath} + (\vec{r} \cdot \hat{\jmath})\hat{\jmath} + (\vec{r} \cdot \hat{k})\hat{k}$ Replacing $(\vec{r}) = \vec{a} \times \vec{b}$ $\vec{a} \times \vec{b} = (\vec{a} \times \vec{b} \cdot \hat{\imath})\hat{\imath} + (\vec{a} \times \vec{b} \cdot \hat{\jmath})\hat{\jmath} + (\vec{a} \times \vec{b} \cdot \hat{k})\hat{k}$ $\vec{a} \times \vec{b} = [\vec{a} \cdot \vec{b} \cdot \hat{\imath}]\hat{\imath} + [\vec{a} \cdot \vec{b} \cdot \hat{\jmath}]\hat{\jmath} + [\vec{a} \cdot \vec{b} \cdot \hat{k}]\hat{k}$

7. Question

If the vectors (sec² A) $\hat{i} + \hat{j} + \hat{k}$, $\hat{i} + (\sec^2 B)\hat{j} + \hat{k}$, $\hat{i} + \hat{j} + (\sec^2 C)\hat{k}$ are coplanar, then find the value of $\csc^2 A A + \csc^2 B + \csc^2 C$.

Answer

For three vectors to be coplanar we have $\begin{vmatrix} \sec^2 A & 1 & 1 \\ 1 & \sec^2 B & 1 \\ 1 & 1 & \sec^2 C \end{vmatrix} = 0$

Which gives $\sec^2 A \sec^2 B \sec^2 C - \sec^2 A - \sec^2 B - \sec^2 C + 2 = 0^{\dots(1)}$

$$sec^2\theta = \frac{cosec^2\theta - 2}{cosec^2\theta - 1}$$
.....(2)

Substituting equation 2 in 1 we have

$$\frac{(cosec^{2}A - 2)(cosec^{2}B - 2)(cosec^{2}C - 2)}{(cosec^{2}A - 1)(cosec^{2}B - 1)(cosec^{2}C - 1)} - \frac{cosec^{2}A - 2}{cosec^{2}A - 1} - \frac{cosec^{2}B - 2}{cosec^{2}B - 1} - \frac{cosec^{2}C - 2}{cosec^{2}B - 1} + 2 = 0$$

Let $cosec^2 A = x cosec^2 B = y$ and $cosec^2 C = z$

So we have $\frac{(x-2)(y-2)(z-2)}{(x-1)(y-1)(z-1)} - \frac{x-2}{x-1} - \frac{y-2}{y-1} - \frac{z-2}{z-1} + 2 = 0$

=(x-2)(y-2)(z-2)-(x-2)(y-1)(z-1)-(x-1)(y-2)(z-1)-(x-1)(y-1)(z-2)+2(x-1)(y-1)(z-1)=0

Solving we have x+y+z=4

Hence $cosec^2A + cosec^2B + cosec^2C = 4$

8. Question

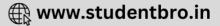
For any two vectors of \vec{a} and \vec{b} of magnitudes 3 and 4 respectively, write the value of $\left[\vec{a} \ \vec{b} \ \vec{a} \times \vec{b}\right] + \left(\vec{a} \ \vec{b}\right)^2$.

Answer

 $[\vec{a}, \vec{b}, \vec{c}] = \vec{a} \cdot (\vec{b} \times \vec{c}) = \vec{a} \times (\vec{b}, \vec{c})$ the dot and cross can be interchanged in scalar triple product.

Let the angle between \vec{a} and \vec{b} vector be θ

 $\vec{a} \cdot \vec{b} = |\vec{a}| |\vec{b}| \cos \theta = 12 \cos \theta$



 $\begin{bmatrix} \vec{a} \ \vec{b} \ \vec{a} \times \vec{b} \end{bmatrix} + (\vec{a} \ \vec{b})^2 = \vec{a} \cdot (\vec{b} \times (\vec{a} \times \vec{b}))$ $= \vec{a} \times (\vec{b} \cdot (\vec{a} \times \vec{b}))$ $= (\vec{a} \times \vec{b}) \cdot (\vec{a} \times \vec{b})$ $= |(\vec{a} \times \vec{b})||(\vec{a} \times \vec{b})|\cos 0$ $= (|\vec{a}||\vec{b}|\sin \theta)^2$ $= 144 \sin^2 \theta + 144 \cos^2 \theta$ = 144(1)

9. Question

 $\text{If} \left[3\vec{a} \ 7\vec{b} \ \vec{c} \ \vec{d} \right] = \lambda \left[\vec{a} \ \vec{b} \ \vec{c} \ \right] + \mu \left[\vec{b} \ \vec{c} \ \vec{d} \right], \text{then find the value of } \lambda + \mu.$

Answer

 $[3\vec{a} \ 7\vec{b} \ \vec{c} \ \vec{d}] = \lambda [\vec{a} \ \vec{b} \ \vec{c} \] + \mu \ [\vec{b} \ \vec{c} \ \vec{d}]$ $3\vec{a} = \lambda \vec{a}$ $\lambda = 3$ $\vec{c} = \mu \vec{c}$ $\mu = 1$ So, $\lambda + \mu = 3 + 1$ = 4**10. Question**

If \vec{a} , \vec{b} , \vec{c} are non-coplanar vectors, then find the value of $\frac{\vec{a} \cdot (\vec{b} \times \vec{c})}{(\vec{c} \times \vec{a}) \cdot \vec{b}} + \frac{\vec{b} \cdot (\vec{a} \times \vec{c})}{\vec{c} \cdot (\vec{a} \times \vec{b})}$.

Answer

 $\begin{bmatrix} \vec{a} & \vec{b} & \vec{c} \end{bmatrix} = \vec{a} \cdot (\vec{b} \times \vec{c}) = \vec{a} \times (\vec{b} \cdot \vec{c})$ the dot and cross can be interchanged in scalar triple product. Also $\begin{bmatrix} \vec{a} & \vec{b} & \vec{c} \end{bmatrix} = \begin{bmatrix} \vec{c} & \vec{a} & \vec{b} \end{bmatrix} = \begin{bmatrix} \vec{b} & \vec{c} & \vec{a} \end{bmatrix}$ (cyclic permutation of three vectors does not change the value of the scalar triple product)

 $\begin{bmatrix} \overrightarrow{a} & \overrightarrow{b} & \overrightarrow{c} \end{bmatrix} = -\begin{bmatrix} \overrightarrow{a} & \overrightarrow{c} & \overrightarrow{b} \end{bmatrix}$

Using these results $\frac{\overrightarrow{a}.(\overrightarrow{b}\times\overrightarrow{c})}{(\overrightarrow{c}\times\overrightarrow{a}).\overrightarrow{b}} + \frac{\overrightarrow{b}.(\overrightarrow{a}\times\overrightarrow{c})}{\overrightarrow{c}.(\overrightarrow{a}\times\overrightarrow{b})} = \frac{\overrightarrow{a}.(\overrightarrow{b}\times\overrightarrow{c})}{(\overrightarrow{c}\times\overrightarrow{a}).\overrightarrow{b}} + \frac{-\overrightarrow{a}.(\overrightarrow{b}\times\overrightarrow{c})}{(\overrightarrow{c}\times\overrightarrow{a}).\overrightarrow{b}} = 0$

11. Question

Find
$$\vec{a} \cdot (\vec{b} \times \vec{c})$$
, if $\vec{a} = 2\hat{i} + \hat{j} + 3\hat{k}$, $\vec{b} = -\hat{i} + 2\hat{j} + \hat{k}$ and $\vec{c} = 3\hat{i} + \hat{j} + 2\hat{k}$.

Answer

$$\vec{a} \cdot (\vec{b} \times \vec{c}) = \begin{vmatrix} 2 & 1 & 3 \\ -1 & 2 & 1 \\ 3 & 1 & 2 \end{vmatrix} = -10$$

Get More Learning Materials Here :

🕀 www.studentbro.in

MCQ

1. Question

Mark the correct alternative in each of the following:

If \bar{a} lies in the plane of vectors \bar{b} and \bar{c} , then which of the following is correct?

- A. $\begin{bmatrix} \vec{a} \, \vec{b} \, \vec{c} \end{bmatrix} = 0$
- B. $\begin{bmatrix} \vec{a} \ \vec{b} \ \vec{c} \end{bmatrix} = 1$
- C. $\left[\vec{a}\vec{b}\vec{c}\right] = 3$
- D. $\left[\vec{b} \ \vec{c} \ \vec{a}\right] = 1$

Answer

Here, \vec{a} lies in the plane of vectors \vec{b} and \vec{c} , which means \vec{a} , \vec{b} and \vec{c} are coplanar.

We know that $\vec{b} \ge \vec{c}$ is perpendicular to \vec{b} and \vec{c} .

Also dot product of two perpendicular vector is zero.

Since, \vec{a} , \vec{b} , \vec{c} are coplanar, $\vec{b} \times \vec{c}$ is perpendicular to \vec{a} .

So, $\vec{a} \cdot (\vec{b} \times \vec{c}) = 0$

 $\Rightarrow \left[\vec{a} \ \vec{b} \ \vec{c} \right] = 0$

2. Question

Mark the correct alternative in each of the following:

```
The value of \left[\vec{a} - \vec{b} \ \vec{b} - \vec{c} \ \vec{c} - \vec{a}\right], where |\vec{a}| = 1, |\vec{b}| = 5, |\vec{c}| = 3 is
```

A. 0

- B. 1
- C. 6

D. none of these

Answer

$$\begin{bmatrix} \vec{a} - \vec{b} \, \vec{b} - \vec{c} \, \vec{c} - \vec{a} \end{bmatrix} = \begin{bmatrix} \vec{a} \, \vec{b} - \vec{c} \, \vec{c} - \vec{a} \end{bmatrix} - \begin{bmatrix} \vec{b} \, \vec{b} - \vec{c} \, \vec{c} - \vec{a} \end{bmatrix}$$
$$= \begin{bmatrix} \vec{a} \, \vec{b} \, \vec{c} - \vec{a} \end{bmatrix} - \begin{bmatrix} \vec{b} \, \vec{c} \, \vec{c} - \vec{a} \end{bmatrix} - \begin{bmatrix} \vec{b} \, \vec{b} \, \vec{c} - \vec{a} \end{bmatrix} + \begin{bmatrix} \vec{b} \, \vec{b} \, \vec{c} - \vec{a} \end{bmatrix}$$
$$= \begin{bmatrix} \vec{a} \, \vec{b} \, \vec{c} \end{bmatrix} - \begin{bmatrix} \vec{a} \, \vec{b} \, \vec{a} \end{bmatrix} - \begin{bmatrix} \vec{b} \, \vec{c} \, \vec{c} \end{bmatrix} - \begin{bmatrix} \vec{b} \, \vec{c} \, \vec{a} \end{bmatrix} - 0 + 0$$
$$= \begin{bmatrix} \vec{a} \, \vec{b} \, \vec{c} \end{bmatrix} - 0 - 0 - \begin{bmatrix} \vec{b} \, \vec{c} \, \vec{a} \end{bmatrix}$$
$$= \begin{bmatrix} \vec{a} \, \vec{b} \, \vec{c} \end{bmatrix} - \begin{bmatrix} \vec{a} \, \vec{b} \, \vec{c} \end{bmatrix}$$
$$= 0$$

3. Question

Mark the correct alternative in each of the following:

If \vec{a} , \vec{b} , \vec{c} are three non-coplanar mutually perpendicular unit vectors, then $\left[\vec{a}\,\vec{b}\,\vec{c}\right]$ is

A. ±1



В. О

C. -2

D. 2

Answer

Here, $\vec{a} \perp \vec{b} \perp \vec{c}$ and $|\vec{a}| = |\vec{b}| = |\vec{c}| = 1$.

 $\Rightarrow \vec{a} X \vec{b} || \vec{c}$

 \Rightarrow angle between $\vec{a} \times \vec{b}$ and \vec{c} is $\theta = 0^{\circ}$ or $\theta = 180^{\circ}$.

 $\begin{bmatrix} \vec{a} \ \vec{b} \ \vec{c} \end{bmatrix} = (\vec{a} \ X \ \vec{b}) \cdot \vec{c}$ $= \| \vec{a} \| \| \vec{b} \| \sin\theta \ \hat{n} \cdot \vec{c}$ $= 1 \cdot 1 \cdot 1 \ \hat{n} \cdot \vec{c}$ $= \| \hat{n} \| \| \vec{c} \| \cos\theta$ $= 1 \cdot 1 \cos\theta$ $= \pm 1$

4. Question

Mark the correct alternative in each of the following:

```
If \vec{r} \cdot \vec{a} = \vec{r} \cdot \vec{b} = \vec{r} \cdot \vec{c} = 0 for some non-zero vector \vec{r}, then the value of \left[\vec{a} \, \vec{b} \, \vec{c}\right], is
```

A. 2

В. З

C. 0

D. none of these

Answer

Here, $\vec{r} \cdot \vec{a} = \vec{r} \cdot \vec{b} = \vec{r} \cdot \vec{c} = 0$

 $\Rightarrow \vec{r} \perp \vec{a}, \vec{r} \perp \vec{b}, \vec{r} \perp \vec{c}$

 $\Rightarrow \vec{a}$, \vec{b} and \vec{c} are coplanar.

 $\Rightarrow [\vec{a} \, \vec{b} \, \vec{c}] = 0$

5. Question

Mark the correct alternative in each of the following:

For any three vector $\vec{a}, \vec{b}, \vec{c}$ the expression $(\vec{a} - \vec{b}) \cdot \{ (\vec{b} - \vec{c}) \times (\vec{c} - \vec{a}) \}$ equals

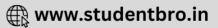
A. [*ā b̄ c̄*]

B. $2\left[\vec{a}\vec{b}\vec{c}\right]$

C. $\left[\vec{a}\,\vec{b}\,\vec{c}\right]^2$

D. none of these

Answer



$$(\vec{a} - \vec{b}) \cdot \{(\vec{b} - \vec{c}) X (\vec{c} - \vec{a})\} = [\vec{a} - \vec{b} \, \vec{b} - \vec{c} \, \vec{c} - \vec{a}]$$

$$= [\vec{a} \, \vec{b} - \vec{c} \, \vec{c} - \vec{a}] - [\vec{b} \, \vec{b} - \vec{c} \, \vec{c} - \vec{a}]$$

$$= [\vec{a} \, \vec{b} \, \vec{c} - \vec{a}] - [\vec{b} \, \vec{c} \, \vec{c} - \vec{a}] - [\vec{b} \, \vec{b} \, \vec{c} - \vec{a}] + [\vec{b} \, \vec{b} \, \vec{c} - \vec{a}]$$

$$= [\vec{a} \, \vec{b} \, \vec{c}] - [\vec{a} \, \vec{b} \, \vec{a}] - [\vec{b} \, \vec{c} \, \vec{c}] - [\vec{b} \, \vec{c} \, \vec{a}] - 0 + 0$$

$$= [\vec{a} \, \vec{b} \, \vec{c}] - 0 - 0 - [\vec{b} \, \vec{c} \, \vec{a}]$$

$$= [\vec{a} \, \vec{b} \, \vec{c}] - [\vec{a} \, \vec{b} \, \vec{c}]$$

$$= 0$$

6. Question

Mark the correct alternative in each of the following:

If \vec{a} , \vec{b} , \vec{c} are non-coplanar vectors, then $\frac{\vec{a}.(b - X\vec{c})}{(\vec{c} X \vec{a}).\vec{b}} + \frac{\vec{b}.(\vec{a} X \vec{c})}{\vec{c}.(\vec{a} X \vec{b})}$ is

A. 0

B. 2

C. 1

D. none of these

Answer

$$\frac{\vec{a} \cdot (\vec{b} \cdot \vec{x} \cdot \vec{c})}{(\vec{c} \cdot \vec{x} \cdot \vec{a}) \cdot \vec{b}} + \frac{\vec{b} \cdot (\vec{a} \cdot \vec{c})}{\vec{c} \cdot (\vec{a} \cdot \vec{b})} = \frac{[\vec{a} \cdot \vec{b} \cdot \vec{c}]}{[\vec{c} \cdot \vec{a} \cdot \vec{b}]} + \frac{[\vec{b} \cdot \vec{a} \cdot \vec{c}]}{[\vec{c} \cdot \vec{a} \cdot \vec{b}]}$$
$$= \frac{[\vec{a} \cdot \vec{b} \cdot \vec{c}] + [\vec{b} \cdot \vec{a} \cdot \vec{c}]}{[\vec{c} \cdot \vec{a} \cdot \vec{b}]}$$
$$= \frac{[\vec{a} \cdot \vec{b} \cdot \vec{c}] - [\vec{a} \cdot \vec{b} \cdot \vec{c}]}{[\vec{c} \cdot \vec{a} \cdot \vec{b}]}$$

=0

7. Question

Mark the correct alternative in each of the following:

Let $\vec{a} = a_1\hat{i} + a_2\hat{j} + a_3\hat{k}$, $\vec{b} = b_1\hat{i} + b_2\hat{j} + b_3\hat{k}$ and $\vec{c} = c_1\hat{i} + c_2\hat{j} + c_3\hat{k}$ be three non-zero vectors such that \vec{c} is a unit vector perpendicular to both \vec{a} and \vec{b} . If the angle between \vec{a} and \vec{b} is $\frac{\pi}{6}$, then $\begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix}^2$ is equal to

A. 0 B. 1 C. $\binom{1}{4} |\vec{a}|^2 |\vec{b}|^2$ D. $\binom{3}{4} |\vec{a}|^2 |\vec{b}|^2$

Answer

Get More Learning Materials Here : 📕

R www.studentbro.in

$$\begin{bmatrix} a_{1} & a_{2} & a_{3} \\ b_{1} & b_{2} & b_{3} \\ c_{1} & c_{2} & c_{3} \end{bmatrix}^{2} = \left[\vec{a} \ \vec{b} \ \vec{c} \right]^{2}$$

$$= \left[\left[\vec{a} X \vec{b} \right) \cdot \vec{c} \right]^{2}$$

$$= \left[|\vec{a}| |\vec{b}| \sin \left(\frac{\pi}{6}\right) \cdot \vec{c} \right]^{2}$$

$$= |\vec{a}|^{2} |\vec{b}|^{2} \left(\frac{1}{4}\right) \cdot \vec{c}^{2}$$

$$= |\vec{a}|^{2} |\vec{b}|^{2} \left(\frac{1}{4}\right) \cdot |\vec{c}|^{2} \cos 0 \quad (\because \vec{c} \text{ is perpendicular to } \vec{a} \text{ and } \vec{b} \Rightarrow \text{ angle is } 0)$$

$$= |\vec{a}|^{2} |\vec{b}|^{2} \left(\frac{1}{4}\right) \cdot |\vec{c}|^{2}$$

$$= |\vec{a}|^{2} |\vec{b}|^{2} \left(\frac{1}{4}\right) \cdot (\because \vec{c} \text{ is unit vector })$$

$$= \left(\frac{1}{4}\right) |\vec{a}|^{2} |\vec{b}|^{2}$$

8. Question

Mark the correct alternative in each of the following:

If $\vec{a} = 2\hat{i} - 3\hat{j} + 5\hat{k}$, $\vec{b} = 3\hat{i} - 4\hat{j} + 5\vec{k}$ and $\vec{c} = 5\hat{i} - 3\hat{j} - 2\hat{k}$, then the volume of the parallelepiped with conterminous edges $\vec{a} + \vec{b}$, $\vec{b} + \vec{c}$, $\vec{c} + \vec{a}$ is

CLICK HERE

≫

R www.studentbro.in

A. 2

B. 1

C. -1

D. 0

Answer

Let $\vec{e} = \vec{a} + \vec{b} = 5\hat{\imath} - 7\hat{\jmath} + 10\hat{k}$ $\vec{f} = \vec{b} + \vec{c} = 8\hat{\imath} - 7\hat{\jmath} + 3\hat{k}$ $\vec{g} = \vec{c} + \vec{a} = 7\hat{\imath} - 6\hat{\jmath} + 3\hat{k}$

Now,the volume of the parallelepiped with conterminous edges $ec{e}$, $ec{f}$, $ec{g}$ is given by

$$V = \begin{bmatrix} \vec{e} & \vec{f} & \vec{g} \end{bmatrix}$$

= $\begin{bmatrix} e_1 & e_2 & e_3 \\ f_1 & f_2 & f_3 \\ g_1 & g_2 & g_3 \end{bmatrix} = \begin{bmatrix} 5 & -7 & 10 \\ 8 & -7 & 3 \\ 7 & -6 & 3 \end{bmatrix}$
= 5× (-21+18)+7× (24-21)+10× (-48+49) ×
= 5× (-3)+7× 3+10× 1
= -15+21+10
= 16

9. Question

Mark the correct alternative in each of the following:

 $\mathsf{If} \left[2\vec{a} + 4\vec{b} \ \vec{c} \ \vec{d} \right] = \lambda \left[\vec{a} \ \vec{c} \ \vec{d} \right] + \mu \left[\vec{b} \ \vec{c} \ \vec{d} \right] \mathsf{then} \ \lambda + \mu =$

- A. 6
- В. -6
- C. 10
- D. 8

Answer

$$\begin{split} \lambda \begin{bmatrix} \vec{a} \ \vec{c} \ \vec{d} \end{bmatrix} + \mu \begin{bmatrix} \vec{b} \ \vec{c} \ \vec{d} \end{bmatrix} &= \begin{bmatrix} 2\vec{a} + 4\vec{b} \ \vec{c} \ \vec{d} \end{bmatrix} \\ &= \begin{bmatrix} 2\vec{a} \ \vec{c} \ \vec{d} \end{bmatrix} + \begin{bmatrix} 4\vec{b} \ \vec{c} \ \vec{d} \end{bmatrix} \\ &= 2\begin{bmatrix} \vec{a} \ \vec{c} \ \vec{d} \end{bmatrix} + 4\begin{bmatrix} \vec{b} \ \vec{c} \ \vec{d} \end{bmatrix} \end{split}$$

Now, comparing the coefficient of lhs and rhs we get, $\lambda{=}2$ and $\mu{=}4$

 $\therefore \lambda + \mu = 2 + 4$

=6

10. Question

Mark the correct alternative in each of the following:

 $\begin{bmatrix} \vec{a} \, \vec{b} \, \vec{a} \, X \, \vec{b} \end{bmatrix} + \left(\vec{a} \, . \vec{b} \right)^2$ A. $|\vec{a}|^2 |\vec{b}|^2$ B. $|\vec{a} + \vec{b}|^2$ C. $|\vec{a}|^2 + |\vec{b}|^2$ D. $2|\vec{a}|^2 + |\vec{b}|^2$ D. $2|\vec{a}|^2 + |\vec{b}|^2$ Answer $\begin{bmatrix} \vec{a} \, \vec{b} \, \vec{a} \, X \, \vec{b} \end{bmatrix} + \left(\vec{a} \, \cdot \, \vec{b} \right)^2 = \left(\vec{a} \, X \, \vec{b} \right) \cdot \left(\vec{a} \, X \, \vec{b} \right) + \left(\vec{a} \, \cdot \, \vec{b} \right)^2$ $= \left(\vec{a} \, X \, \vec{b} \right)^2 + \left(\vec{a} \cdot \, \vec{b} \right)^2$

 $= |a|^{2} |b|^{2} \sin^{2} \theta + |a|^{2} |b|^{2} \cos^{2} \theta$

 $= |a|^2 |b|^2 (\sin^2 \theta + \cos^2 \theta)$

 $= |a|^2 |b|^2$

11. Question

Mark the correct alternative in each of the following:

If the vectors $4\hat{i} + 11\hat{j} + m\hat{k}$, $7\hat{i} + 2\hat{j} + 6\hat{k}$ and $\hat{i} + 5\hat{j} + 4\hat{k}$ are coplanar, then m =

A. 0 B. 38 C. -10 D. 10 **Answer** $\vec{a} = (4 \ 11 \ m)$

 $\vec{b} = (7\ 02\ 6)$

 $\vec{c} = (1\,05\,4)$

Here, vector a, b, and c are coplanar. So, $[a^{\dagger}b^{\dagger}c^{\dagger}] = 0$.

 $\therefore \begin{bmatrix} 4 & 11 & m \\ 7 & 2 & 6 \\ 1 & 5 & 4 \end{bmatrix} = 0$ $\therefore 4(8-30)-11(28-6)+m(35-2)= 0$ $\therefore 4(-22)-11(22)+33m = 0$ $\therefore -88 -242 +33m = 0$ $\therefore 33m = 330$

∴ m = 10

12. Question

Mark the correct alternative in each of the following:

For non-zero vectors \vec{a} , \vec{b} and \vec{c} the relation $|(\vec{a} \times \vec{b}).\vec{c}| = |\vec{a}| |\vec{b}| |\vec{c}|$ holds good, if

- A. \vec{a} . $\vec{b} = \vec{b}$. $\vec{c} = 0$
- $\mathsf{B}. \ \vec{a} \ . \ \vec{b} = 0 = \vec{c} \ . \ \vec{a}$
- $\mathsf{C}.\ \vec{a}\ .\ \vec{b}=\vec{b}\ .\ \vec{c}=\vec{c}\ .\ \vec{a}=0$
- $\mathsf{D}.\ \vec{b}\ .\ \vec{c}=\vec{c}\ .\ \vec{a}=0$

Answer

Let $\vec{e} = \vec{a}X\vec{b}$

 $|\vec{e}| = |\vec{a}| |\vec{b}| sin\alpha$ ------(1) (:: α is angle between \vec{a} and \vec{b})

Then $|(\vec{a}X\vec{b})\cdot\vec{c}| = |\vec{e}\cdot\vec{c}|$

 $= |\vec{e}| |\vec{c}| \cos\theta$ (:: θ is angle between \vec{e} and $\vec{c} \Rightarrow \theta$ is angle between $\vec{a} \times \vec{b}$ and \vec{c})

 $= |\vec{a}| |\vec{b}| |\vec{c}| \cos\theta \sin\alpha \quad (\because \text{ using (1)})$

Hence, $|\vec{a}X\vec{b}) \cdot \vec{c} = |\vec{a}| |\vec{b}| |\vec{c}|$ if and only if $cos\theta sin\alpha = 1$

if and only if $cos\theta = 1$ and $sin \alpha = 1$

if and only if $\theta = 0$ and $\alpha = \frac{\pi}{2}$

 $\alpha = \frac{\pi}{2} \Rightarrow \vec{a}$ and \vec{b} are perpendicular.

Also \vec{e} is perpendicular to both \vec{a} and \vec{b} .

 $\theta{=}0{\Rightarrow}\ \vec{c}$ is perpendicular to both \vec{a} and \vec{b}

 \therefore a, b, c are mutually perpendicular.

∴ a• b=b• c=c• a=0

13. Question

Mark the correct alternative in each of the following:

 $(\bar{a}+\bar{b})\cdot(\bar{b}+\bar{c})X(\bar{a}+\bar{b}+\bar{c}) =$ A. 0 B. $-[\bar{a}\bar{b}\bar{c}]$ C. $2[\bar{a}\bar{b}\bar{c}]$ D. $[\bar{a}\bar{b}\bar{c}]$ Answer $(\bar{a}+\bar{b})\cdot(\bar{b}+\bar{c})X(\bar{a}+\bar{b}+\bar{c}) = [(\bar{a}+\bar{b})(\bar{b}+\bar{c})(\bar{a}+\bar{b}+\bar{c})]$ $= [\bar{a}\bar{b}+\bar{c}\bar{a}+\bar{b}+\bar{c}] + [\bar{b}\bar{b}+\bar{c}\bar{a}+\bar{b}+\bar{c}]$ $= [\bar{a}\bar{b}\bar{b}+\bar{c}\bar{a}+\bar{b}+\bar{c}] + [\bar{a}\bar{c}\bar{c}\bar{a}+\bar{b}+\bar{c}] + [\bar{b}\bar{b}\bar{c}\bar{a}+\bar{b}+\bar{c}] + [\bar{b}\bar{c}\bar{c}\bar{a}+\bar{b}+\bar{c}]$ $= [\bar{a}\bar{b}\bar{c}] + [\bar{a}\bar{b}\bar{d}] + [\bar{a}\bar{b}\bar{b}] + [\bar{a}\bar{c}\bar{c}] + [\bar{a}\bar{c}\bar{b}] + [\bar{a}\bar{c}\bar{c}] + [\bar{a}\bar{c}\bar{c}]$ $= [\bar{a}\bar{b}\bar{c}] + 0 + 0 + 0 + [\bar{a}\bar{c}\bar{b}] + 0 + [\bar{b}\bar{c}\bar{c}] + 0 + 0$ $= [\bar{a}\bar{b}\bar{c}] + [\bar{a}\bar{c}\bar{b}] - [\bar{a}\bar{c}\bar{b}]$

$$= [\vec{a} \, \vec{b} \, \vec{c}]$$

14. Question

Mark the correct alternative in each of the following:

If \vec{a} , \vec{b} , \vec{c} are three non-coplanar vectors, then $(\vec{a} + \vec{b} + \vec{c}) \cdot [(\vec{a} + \vec{b})X(\vec{a} + \vec{c})]$ equal.

A. 0

- B. $\begin{bmatrix} \vec{a} \ \vec{b} \ \vec{c} \end{bmatrix}$
- C. 2 $\begin{bmatrix} \vec{a} \ \vec{b} \ \vec{c} \end{bmatrix}$
- D. $-\begin{bmatrix} \vec{a} \ \vec{b} \ \vec{c} \end{bmatrix}$

Answer

$$(\vec{a} + \vec{b} + \vec{c}) \cdot [(\vec{a} + \vec{b}) X (\vec{a} + \vec{c})] = [(\vec{a} + \vec{b} + \vec{c}) (\vec{a} + \vec{b}) (\vec{a} + \vec{c})]$$

$$= [\vec{a} + \vec{b} + \vec{c} \vec{a} \vec{a} + \vec{c}] + [\vec{a} + \vec{b} + \vec{c} \vec{b} \vec{a} + \vec{c}]$$

$$= [\vec{a} + \vec{b} + \vec{c} \vec{a} \vec{a}] + [\vec{a} + \vec{b} + \vec{c} \vec{a} \vec{c}] + [\vec{a} + \vec{b} + \vec{c} \vec{b} \vec{a}] + [\vec{a} + \vec{b} + \vec{c} \vec{b} \vec{c}]$$

$$= [\vec{a} \vec{a} \vec{a}] + [\vec{b} \vec{a} \vec{a}] + [\vec{c} \vec{a} \vec{a}] + [\vec{a} \vec{a} \vec{c}] + [\vec{b} \vec{a} \vec{c}] + [\vec{c} \vec{a} \vec{c}] + [\vec{a} \vec{b} \vec{a}] + [\vec{c} \vec{b} \vec{c}]$$

$$= 0 + 0 + 0 + 0 + [\vec{b} \vec{a} \vec{c}] + 0 + 0 + 0 + [\vec{c} \vec{b} \vec{a}] + [\vec{a} \vec{b} \vec{c}] + 0 + 0$$

$$= 2[\vec{a} \vec{b} \vec{c}]$$

CLICK HERE

≫

15. Question

Mark the correct alternative in each of the following:

$$(\vec{a}+2\vec{b}-\vec{c})\cdot\{(\vec{a}-\vec{b})X(\vec{a}-\vec{b}-\vec{c})\} \text{ is equal to}$$
A. $[\vec{a}\vec{b}\vec{c}]$
B. $2[\vec{a}\vec{b}\vec{c}]$
C. $3[\vec{a}\vec{b}\vec{c}]$
D. 0
Answer
$$(\vec{a}+2\vec{b}-\vec{c})\cdot\{(\vec{a}-\vec{b})X(\vec{a}-\vec{b}-\vec{c})\} = [\vec{a}+2\vec{b}-\vec{c}\vec{a}-\vec{b}\vec{a}-\vec{b}-\vec{c}]$$

$$= [\vec{a}\vec{a}-\vec{b}\vec{a}-\vec{b}-\vec{c}] + [2\vec{b}\vec{a}-\vec{b}\vec{a}-\vec{b}-\vec{c}] - [\vec{c}\vec{a}-\vec{b}\vec{a}-\vec{b}-\vec{c}]$$

$$= [\vec{a}\vec{a}\vec{a}-\vec{b}-\vec{c}] - [\vec{a}\vec{b}\vec{a}-\vec{b}-\vec{c}] + [2\vec{b}\vec{a}\vec{a}-\vec{b}-\vec{c}] - [\vec{c}\vec{a}-\vec{b}\vec{a}-\vec{b}-\vec{c}]$$

$$= [\vec{a}\vec{a}\vec{a}-\vec{b}-\vec{c}] - [\vec{a}\vec{b}\vec{a}-\vec{b}-\vec{c}] + [2\vec{b}\vec{a}\vec{a}-\vec{b}-\vec{c}]$$

$$= 0 - [\vec{a}\vec{b}\vec{a}] - [\vec{a}\vec{b}\vec{b}] - [\vec{a}\vec{b}\vec{c}] + [2\vec{b}\vec{a}\vec{a}] - [2\vec{b}\vec{a}\vec{b}] - [2\vec{b}\vec{b}\vec{a}] - [2\vec{b}\vec{b}\vec{a}] + [2\vec{b}\vec{b}\vec{b}] + [2\vec{b}\vec{b}\vec{c}] - [\vec{c}\vec{a}\vec{a}] + [\vec{c}\vec{a}\vec{b}] + [\vec{c}\vec{a}\vec{c}] + [\vec{c}\vec{b}\vec{a}] - [\vec{c}\vec{b}\vec{a}]$$

$$= 0 - 0 - 0 - [\vec{a}\vec{b}\vec{c}] + 0 - 0 - 2[\vec{b}\vec{a}\vec{c}] - 0 + 0 + 0 - 0 + [\vec{c}\vec{a}\vec{b}] + 0 + [\vec{c}\vec{b}\vec{a}] - 0 - 0$$

$$= -[\vec{a}\vec{b}\vec{c}] + 2[\vec{a}\vec{b}\vec{c}] + [\vec{a}\vec{b}\vec{c}] - [\vec{a}\vec{b}\vec{c}]$$

